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Available high-precision facilities f—\q ?

BERKELEY LAB

Vendor-supported arithmetic:
Total Significant

Type Bits Digits Support

IEEE Double 64 16 In hardware on almost all systems.

IEEE Extended 80 18 In hardware on Intel and AMD systems.
IEEE Quad 128 33 In software from some vendors (50-100X

slower than IEEE double).

Non-commercial (free) software:
Total Significant
Type Bits Digits Support
Double-double 128 32 DDFUN90, QD.
Quad-double 256 64 QD.
Arbitrary Any Any  ARPREC, MPFUN90, GMP, MPFR.

Commercial software: Mathematica, Maple.
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LBNL'’s high-precision software ;‘\r‘| !

BERKELEY LAB

QD: double-double (31 digits) and quad-double (62 digits).
ARPREC: arbitrary precision.
Low-level routines written in C++.

C++ and Fortran-90 translation modules permit use with existing C++ and
Fortran-90 programs -- only minor code changes are required.

Includes many common functions: sqrt, cos, exp, gamma, etc.
¢ PSLQ, root finding, numerical integration.
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Available at: http://[www.experimentalmath.info

Authors: Xiaoye Li, Yozo Hida, Brandon Thompson and DHB



High-precision arithmetic and ,’l\,l A
experimental mathematics \\

BERKELEY LAB

“Experimental” methodology:

¢ Compute various mathematical entities (limits, infinite series sums,
definite integrals) to high precision.

¢ Use algorithms such as PSLQ to recognize these entities in terms of well-
known mathematical constants.

¢ Use this same process to discover relations between entities.

¢ When results are found experimentally, seek to find formal mathematical
proofs of the discovered relations.

¢ Many results have been found using this methodology, both in pure math
and in mathematical physics.

1. J. M. Borwein and DHB, Mathematics by Experiment: Plausible Reasoning in the 21st Century, A.K.
Peters, 2004. Second edition 2008.

2. J. M. Borwein, DHB and R. Girgensohn, Experimentation in Mathematics: Computational Paths to
Discovery, A.K. Peters, 2004.

3. DHB, J. M. Borwein, N. J. Calkin, R. Girgensohn, D. R. Luke, V. Moll, Experimental Mathematics in Action,
A.K. Peters, 2007.

4. J. M. Borwein and K. Devlin, The Computer as Crucible: An Introduction to Experimental Mathematics,

A.K. Peters, 2007.
|
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The PSLQ integer relation algorithm f—\q ‘i’.}

BERKELEY LAB

Let (x,) be a given vector of real numbers. An integer relation algorithm
finds integers (a,) such that

a1xy + asxro + -+ apx, = 0

(or within “epsilon” of zero, where epsilon = 10 and p is the precision).

At the present time the "PSLQ” algorithm of mathematician-sculptor
Helaman Ferguson is the most widely used integer relation algorithm. It
was named one of ten “algorithms of the century” by Computing in Science
and Engineering.

1. H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, an integer relation finding algorithm,”
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369.

2. DHB and D. J. Broadhurst, “Parallel integer relation detection: Techniques and applications,” Mathematics
of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.
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PSLQ, continued 'f—\‘l 0

PSLQ constructs a sequence of integer-valued matrices B, that reduces

the vector y = x B,,, until either the relation is found (as one of the columns
of B,), or else precision is exhausted.

At the same time, PSLQ generates a steadily growing bound on the size
of any possible relation.

When a relation is found, the size of smallest entry of the vector y abruptly
drops to roughly “epsilon” (i.e. 10-°, where p is the number of digits of
precision).

The size of this drop can be viewed as a “confidence level” that the

relation is real and not merely a numerical artifact -- a drop of 20+ orders
of magnitude almost always indicates a real relation.

PSLQ (or any other integer relation scheme) requires very high precision
arithmetic (at least nd digits, where d is the size in digits of the largest a,),
both in the input data and in the operation of the algorithm.
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Decrease of log,,(min, |y,|) as a function ’—\l A

of iteration number in a typical PSLQ run EEEN{|

BERKELEY LAB
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Methodology for using PSLQ to ,’—\,l \

recognize an unknown constant a N

BERKELEY LAB

Calculate a to high precision — typically 100 - 1000 digits. This is often the
most computationally expensive part of the entire process.

Based on experience with similar constants or relations, make a list of
possible terms on the right-hand side (RHS) of a linear formula for o, then
calculate each of the n RHS terms to the same precision as o.

If you suspect a is algebraic of degree n (the root of a degree-n polynomial
with integer coefficients), compute the vector (1, o, a?, a3, ..., o).

Apply PSLQ to the (n+1)-long vector, using the same numeric precision as
o, but with a detection threshold a few orders of magnitude larger than
“epsilon”- e.g., 10480 instead of 10-°% for 500-digit arithmetic.

When PSLQ runs, look for a detection following a drop in the size of the
reduced y vector by at least 20 orders of magnitude, to value near epsilon.

If no credible relation is found, try expanding the list of RHS terms.

Another possibility is to search for multiplicative relations (i.e., monomial
expressions), which can be done by taking logarithms of a and constants.
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History of numerical integration :\q \

(quadrature)

1670: Newton devises the Newton-Coates integration rule.
1740: Thomas Simpson develops Simpson’s rule.
1820: Gauss develops Gaussian quadrature.

1950-1970: Adaptive quadrature, Romberg integration, Clenshaw-Curtis
iIntegration, others.

1973: Takashi and Mori develop the tanh-sinh quadrature scheme.

¢ 1985-1990: Maple and Mathematica feature built-in numerical quadrature
facilities.

¢ 2000: Very high-precision quadrature (1000+ digits) methods.

®* & o o
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With high-precision numerical values, we can now use PSLQ to obtain
analytical evaluations of integrals.
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Gaussian quadrature ceceeny]
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Gaussian quadrature is often the most efficient scheme for regular functions
(including at endpoints) and modest precision (< 1000 digits):

[ s i:lef(wj)

The abscissas (x;) are the roots of the n-th degree Legendre polynomial P,
(x) on [-1,1]. The weights (w)) are given by
—2

(n+ 1) P (25) Prya(z;)
The abscissas (x;) are computed by Newton iterations, with starting values

cos[n(j-1/4)/(n+1/2)]. Legendre polynomials and their derivatives can be
computed using the formulas Py(x) = 0, P,(x) =1,

(k+1)Pry1(x) = 2k+1)axPr(x) — kPy_1(x)
Py(z) = n(zPu(z) = Poo1(2))/(2® — 1)

wj —

DHB, X.S. Li and K. Jeyabalan, “A comparison of three high-precision quadrature schemes,” Experimental
Mathematics, vol. 14 (2005), no. 3, pg 317-329.
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Gaussian quadrature, continued cecreed]

BERKELEY LAB

¢+ In cases where the function and higher derivatives are completely regular
even at the endpoints, Gaussian quadrature typically achieves quadratic
convergence — doubling n approximately doubles the precision.

¢ In such cases, Gaussian quadrature is typcially faster than any other
scheme (not including the cost of computing abscissa-weight pairs).

¢ If the function is not regular, accuracy results are typically rather poor.
¢+ Abscissa-weight sets of size n are not related to those for any other n.

¢ The Newton iterations used to calculate abscissas can be performed with
a numeric precision that nearly doubles with each successive iteration.

¢+ The cost of computing abscissa-weight sets increases as the square of n.
There is no known scheme for computing abscissa-weight sets that
avoids this quadratic increase.

¢+ For very high precision (>500 digits), the cost of computing abscissa-
weight sets is often hundreds or thousands of times as expensive as
computing the integral. But the abscissa-weight sets can be computed
once and stored on a disk file.

___________________________________________________________________________________________________________________________________________________________|
11
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The Euler-Maclaurin formula of f‘\q A

numerical analysis
b n
[ f@de = BY S - (@) + £0)
=Y G (D) = D (@) — B
B < 20— 1)(h/(2m)*™2 max [D¥2f ()

a<x<b

Here h = (b - a)/n and x; = a + jh; B,; are Bernoulli numbers; D™ f(x) is the m-
th derivative of f(x).

Note when f(x) and all of its derivatives are zero at the endpoints a and b (as
in a bell-shaped curve), the error E(h) of a simple trapezoidal approximation

to the integral goes to zero more rapidly than any power of h.

K. Atkinson, An Introduction to Numerical Analysis, John Wiley, 1989, pg. 289.

12
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Tanh-sinh quadrature 'f—\‘l 0

BERKELEY LAB

Given f(x) defined on (-1,1), define g(t) = tanh (/2 sinh t). Then setting x
= g(t) yields

/11f(fﬂ)dili‘ / flg(t)g'(t)dt =~ h ZN: w; f (),

where x; = g(hj) and w; = g'(hj). Since g'(f) goes to zero very rapldly for large
t, the product f(g(t)) g(t) typically is a nice bell-shaped function, and thus
the simple summation above is a remarkably accurate. The summation is
continued until the terms are negligible.

The abscissas and weights are computed by these formulas:
r; = tanh|r/2-sinh(hj)]
w; = 7/2-cosh(hj)cosh?[r/2-sinh(hj)]

1. DHB, X.S. Li and K. Jeyabalan, “A comparison of three high-precision quadrature schemes,” Experimental
Mathematics, vol. 14 (2005), no. 3, pg. 317-329.

2. H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,” Publications of RIMS,
Kyoto University, vol. 9 (1974), pg. 721-741.

13
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Tanh-sinh quadrature, continued L

BERKELEY LAB

The requisite conditions are met by a wide range of “reasonable” integrand
functions, even functions with vertical derivatives or blow-up singularities at
the endpoints.

In some cases, even functions that appear regular may have singularities
at higher-level derivatives; Gaussian quadrature cannot handle such
functions, but tanh-sinh can.

For “good” functions, reducing h by half (i.e., doubling the number of
abscissa-weight pairs) approximately doubles the result precision.

Abscissa-weight pairs should be generated up to N such that the weight is
approximately 10-2°, where p is the precision level in digits.

The set of abscissa-weight pairs for a given N are merely the even-indexed
pairs for the abscissa-weight set of size 2N.

The cost of computing abscissa-weight sets increases only linearly with N.

For very high precision (>500 digits), tanh-sinh is often the algorithm of
choice even for regular functions, due to its much lower cost for computing
abscissa-weight sets.

14



Original and transformed integrand
functions

Original integrand function on [-1,1]:
T
f(x) = —log cos (7)

Note the singularities at the endpoints.

Transformed using x = g(t) = tanh (sinh t):

flg(t)g'(t) =
cosh(t)

— log cos|m/2 - tanh(sinh t)] (cosh(sinh £)2

This is now a nice smooth bell-shaped
function, so the E-M formula implies that a
trapezoidal approximation is very accurate.

15
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Erf quadrature :} A

BERKELEY LAB

Erf quadrature is similar to tanh-sinh quadrature:
N

/_1 flz)dz = /_OO flg®)g'(t)dt =~ h Z w; f(z;),

j=—

where
g(t) = erf(?)
r; = erf(hj)

w, = (2/ym)e M)’
erf(z) = (2/\/})/0 ot qt

The erf function can be calculated to high precision using known formulas.

16



A suite of test integrals ceccer]

BERKELEY LaB

Continuous functions on closed intervals:

1
I / tlog(l+t)dt = 1/4
0

1
2 /tQarctantdt (m—242log2)/12

3 / el costdt = (/% —1)/2

0

1

tan(v/2 1 £2

4 / arctan(v2 + )dt — 572/96
0 (1—|—t2 2—|—t2

17
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A suite of test integrals, continued :} t

BERKELEY LAB

Continuous functions with infinite derivative at an endpoint:

1
5 /\/ilogtdt: —4/9
0
1
6 /\/1—t2dt:7r/4
0

Continuous functions with a blow-up singularity at an endpoint:

dt = 2/70(3/4)/T(1/4)

8 log?tdt = 2

=

/2
9 / log(cost)dt = —mlog(2)/2

@)

/2
10 / Viantdt = m/2/2

18
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A suite of test integrals, continued /\] ‘i??

BERKELEY LAB]

Continuous functions on an infinite interval:

11 / dt=/ ” — /2
0 1+t2 0 1—2S—|—2S2

oo -t 1 1-1/s
12 / T D NN
0o Vi 0 Vs3— st
o0 1 —(1/s=1)%/2 4
: —t2/2 3. € s
13./0@/6175_/0 > = /7/2

19



Comparison of three quadrature schemes
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N

BERKELEY LAB

QUADGS QUADERF QUADTS
Prob. | Level Time | Error Level Time | Error Level Time | Error
Init | 12 | 73,046.28 13 | 3,891.63 12 | 390.83
1 7 6.86 | 10— 1012 10 97.16 | 10—1004 9 37.33 | 101010
2 7 9.13 | 10101 11 112.11 | 10—1003 9 32.64 | 101010
3 7 10.01 | 101009 10 90.29 | 101004 9 41.23 | 10—1008
4 7 9.31 | 101010 11 453.92 | 10—1003 9 67.39 | 101009
5 12 14.70 | 10713 10 88.43 | 10— 1004 8 18.54 | 10~ 1010
6| 12 1.39 | 1071 10 6.75 | 101004 9 2.29 | 10—1010
71 12 2.49 | 10~° 10 15.21 | 10—1o0t 9 4.40 | 101002
8| 12 13.89 | 1078 10 98.25 | 10—1004 8 19.19 | 101009
9| 12 18.66 | 10~? 10 113.49 | 10—1004 9 48.18 | 101008
10 | 12 7.06 | 107° 10 35.80 | 10100l 9 15.55 | 101002
11 8 0.41 | 10~ 1012 11 10.41 | 101003 10 3.03 | 101009
12 12 7.98 | 107° 13 211.03 | 10100t 11 65.05 | 101002
13| 11 98.50 | 101011 13 117.09 | 10—1003 12 85.61 | 101007

20
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A “nice” function that requires tanh-sinh  rreee?]

BERKELEY LAB

20000 -

10000 |

-10000 |-

—20000 |-

Plots of

fle) = sin’(mz)((p, )

and its fourth derivative, for p = 3 (blue) and p = 3.5 (red).

In the case p = 3.5, because of the singularity in the fourth derivative,
Gaussian quadrature gives very poor results; but tanh-sinh works fine.

21
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A log-tan integral identity cereeny) ‘iﬁ

BERKELEY LAB

tant + \/7
tant — \/7

24 /2
7\/7 /3

lOg dt = L_7(2) =

= 1 1 1 1 1 1

nzo [(m +1)2 i (Tn+2)2  (Tn + 3)2 i (Tn+4)2  (Tn+5)2 (Tn+ 6)2]
This identity arises from analysis
of volumes of knot complements in

hyperbolic space. This is simplest |
of 998 related identities. s ’

We verified this numerically to ; /\
20,000 digits (using highly parallel -
tanh-sinh quadrature). A proof is
now known.

DHB, J. M. Borwein, V. Kapoor and E. Weisstein,
“Ten problems in experimental mathematics,”

-
T

American Mathematical Monthly, vol. 113, no. 6 __._. e k ‘
(Jun 2006), pg. 481-409 . 11 12 13 14 1

22



~
\

Computing high-precision values of r"\rl A
multi-dimension integrals ]

BERKELEY LAB

Computing multi-hundred digit numerical values of 2-D, 3-D and higher-
dimensional integrals remains a major challenge.

Typical approach:
¢ Consider the 2-D or 3-D domain divided into 1-D lines.

¢ Use Gaussian quadrature (for regular functions) or tanh-sinh quadrature
(if function has vertical derivates or singularities on boundaries) on each
of the 1-D lines.

¢+ Discontinue evaluation beyond points where it is clear that function-weight
products are smaller than the “epsilon” of the precision level (this works
better with tanh-sinh).

Even with “smart” evaluation that avoids unnecessary evaluations, the
computational cost increases very sharply with dimension:

¢ If 1000 evaluation points are required in 1-D for a given precision, then
typically 1,000,000 are required in 2-D and 1,000,000,000 in 3-D, etc.

23
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Ising integrals eceeey]

We recently applied our methods to study three classes of integrals that
arise in the Ising theory of mathematical physics — D, and two others:

o B 4/00 /OO 1 duq du,,
o= - o

o (S 1))
D . / / Z<] uz—l—u;) du1 dun
e o

1/“3)) !

2
/ / YW ) by dis - dt,
,lc‘|‘u]'

1<y <k<

where in the last line u, = t, £, ... t,.

DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” Journal of Physics A: Mathematical
and General, vol. 39 (2006), pg. 12271-12302.

24
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Computing and evaluating C ;‘\r‘| 1
: BEHKE

We observed that the multi-dimensional C,, integrals can be transformed

to 1-D integrals:
2n [0

where K, is the modified Bessel function. In this form, the C, constants
appear naturally in in quantum field theory (QFT).

We used this formula to compute 1000-digit numerical values of various
C,, from which the following results and others were found, then proven:

C; = 2
Co = 1

&
|
-

s

2
|

7 N\
w
S
+ |~
—t
o
|
)
S
+ |~
(\)
e
N———

25



Sy

Limiting value of C, ;\q 0
BEHKE

The C, numerical values appear to approach a limit. For instance,
Clho24 = 0.63047350337438679612204019271087890435458707871273234 . . .

What is this limit? We copied the first 50 digits of this numerical value into
the online Inverse Symbolic Calculator (ISC):
http://ddrive.cs.dal.ca/~isc

The result was:

lim C,, = 2e &
n—oo
where gamma denotes Euler’s constant. Finding this limit led us to the
asymptotic expansion and made it clear that the integral representation of
C, is fundamental.

26
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Other Ising integral evaluations ;\q

A
1

Dy, = 1/3

Dy = 8+4+4n*/3 —27L_3(2)

Dy, = 47%/9—1/6—17¢(3)/2

EFy = 6—8log2

Es = 10—27% —8log2+ 32log*?2

E, = 22-—82((3)—24log2+ 176log” 2 — 256(log> 2)/3
+167%log 2 — 2277 /3

Es = 42 —1984Liy(1/2) + 1897 /10 — 74¢(3) — 1272¢(3) log 2

+4072 log® 2 — 6272 /3 + 40(7? log 2) /3 + 881og” 2
+4641og® 2 — 40log 2

where Li (x) is the polylog function. D,, D; and D, were originally provided
to us by mathematical physicist Craig Tracy, who hoped that our tools could

heIE identifx Dﬁ.

27



The Ising integral E,

We were able to reduce E;,
which is a 5-D integral, to an
extremely complicated 3-D
integral.

We computed this integral to
250-digit precision, using a
highly parallel, high-precision
3-D quadrature program.
Then we used a PSLQ
program to discover the
evaluation given on the
previous page.

We also computed D, to 500
digits, but were unable to
identify it. The digits are
available if anyone wishes to
further explore this question.
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= [ 020w 220 e -

( [4(z + 1) (2zy + 1) log(2) (y523x7 Yy 224y + 1)z +3)25 — 432 ((y2 +1) 22+ 4A(y+
Dz+5)2° + 3 (dyly + 1)2° + 3 (y> + 1) 22 +4(y+1)z—1)m4+y(z(22+4z
+5) 2 +4 (2 + 1) y+5z+4)2® + ((—32> =4z + 1) y* — day + 1) 2” — (y(52 + 4)
+4)e = 1]/ [(z = 1)*(xy — 1)*(zyz = 1)°] + [3(y — 1)*y" (= = 1)%2*(y2

—1)22% + 2y%2 (3(z — 1)%2%° + 2 (52° + 322 + 32+ 5) y* + (2 — 1)%2

(522 + 162 +5) y® + (32° + 321 — 2225 — 2227 + 32+ 3) y? + 3 (-2 + 2% + 2
2242 —2)y+322 4522+ 52+ 3) 2% + 7 (T(z — 1)%2%y° — 223 (Z + 1522

+152 + 1) 3° + 22 (—212" + 62° + 1427 + 62 — 21) y* — 22 (2° — 62" — 272°
—272% — 62+ 1) y® + (72° — 302° + 282" + 542° + 2822 — 302+ 7) y?> — 2 (72°
+152* —62° — 622 + 152 + 7) y+ 724 =225 — 4222 — 22+ 7) zt —2y (z3 (23

—927 — 9z + 1)y + 27 (72" — 142 — 1822 — 142 + 7) ¢° + 2 (T2° + 142" + 3
24327+ 14z 4+ 7) gt + (2% — 142° + 32" + 842 + 32" — 142+ 1) y* — 3 (32°
+62% — 23 722+62+3) T (924+14z37 1422+14z+9)y+z3+722+7z
+1) 2% + (2 (112" + 62° — 662 + 62 + 11) y° + 22 (52° + 1321 — 22% — 22°

+132 4+ 5) y° + (112° + 262° + 442 — 662° + 442 + 262 + 11) y* + (62° — 4

Z' —662° — 662 — 42+ 6) y° — 2 (332" 4+ 22° — 222° + 22 4+ 33) ¢y + (62° + 26
224262 +6) y + 1127 + 102 + 11) 2% — 2 (22 (52° + 327 + 32 + 5) y° + 2 (222"
+52% — 2227 + 52+ 22) y* + (52° + 52 — 262 — 2627 + 52 +5) y® + (327

222° — 262" — 222+ 3) y* + (32° + 52" + 52+ 3) y + 52 + 222 4+ 5) v 4+ 152" 4+ 22
+2y(z — 1)%(z + 1) + 2¢3(2 — 1)%2(2 + 1) + y*2? (152 + 22 + 15) + y (15z*

—22% — 9022 — 22+ 15) + 15] / [(z — 1)*(y — 1)*(zy — 1)(2 — 1)*(yz — 1)*

(zyz = 1)%] = [4z + Dy + D(yz + 1) (—2°y" + 42z + Dy’ + (> + 1) y°

—d(z+ Dy +4z (y* — 1) (®22 = 1) +2° (2®y* — 42z + 1)y* — (P + 1) ¢°
+4(z+ 1)y + 1) — Dlog(z + 1)] / [(z — 1)3z(y — 1)3(yz — 1)®] — [4(y + 1)(zy
+1)(z+1) (a:2 (z2 —4z—1) y' 4+ da(z + 1) (22 —1) T (a:2 +1) (22 —4z—1)

Y2 —d(z+1) (2° = 1) y+ 22 — 4z — 1) log(ay + 1)] / [2(y — 1)3y(zy — 1)*(2—

1] = [4(z + 1) (yz + 1) (2%9°27 + 2%y (da(y + 1) +5)2° — 2 ((v*+
Da?—4y+ Dz —3) 2" —y* (dy(y+ D)a® +5 (y> + 1) 2® + 4(y + D)z + 1) 2*+
y(y2x374y(y+ 1)x273(y2+1)x74(y+ 1))4 + (53’ v+ 4 Ay +1)
y+1) 22 + (B + 4y +4)z — 1) log(zyz + 1)] / [vy(z — 1)%2(yz — 1)3(2yz — 1)*])]

/(@ + 1Dy +1)%(@y + 1)*(z + 1)%(yz + 1)?(zyz + 1)°] dedydz

28



Sy

. - . . F\l A
Recursions in Ising integrals (eereee ‘m

BERKELEY LAB

Consider the 2- parameter class of Ising integrals (which arises in QFT for odd k):

/ / 1 duq du,,
i L
> (us + 1/“3)) U1 i

After computing 1000-digit numerlcal values for all n up to 36 and all kup to 75
(performed on a highly parallel computer system), we discovered (using PSLQ)
linear relations in the rows of this array. For example, when n = 3:

0 = Csz0—84C52 + 216C5 4

0 = 2031 —69C53+ 135C]5 5

0 = C32—24C54 +40C56

0 = 32053 — 630C5 5+ 945C5 7

0 = 125C54 —2172C5 6 + 3024C5 g

Similar, but more complicated, recursions have been found for all n.

DHB, D. Borwein, J.M. Borwein and R.E. Crandall, “Hypergeometric forms for Ising-class integrals,”
Experimental Mathematics, vol. 16 (2007), pg. 257-276.

J. M. Borwein and B. Salvy, “A proof of a recursion for Bessel moments,” Experimental Mathematics, vol. 17

s2008li pg. 223-230.
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Four hypergeometric evaluations :\WN

[BERKELEY LAB|
1
32722/3 8 1,1 4)

o o SLE/3) \/3”331?2( 1/2,1/2,1/2

Cra = 37T33F2< 1/2,1/2,1/2 1)
| 288 2.9 1
C40 = T; (ZELL?):L = 7%44173 < 1/2’1{’2’1’1{271/2 1)
Cap = g—i 44F3< 1/2, 1{,2,1,1{2, 1/2 1)
_3,F, ( 1/2, 1472,171{2, 1/2 1)] B %

DHB, J.M. Borwein, D.M. Broadhurst and M.L. Glasser, “Elliptic integral representation of Bessel moments,”
Journal of Physics A: Mathematical and Theoretical, vol. 41 (2008), 5203-5231.
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2-D integral in Bessel moment study /\] ?

BERKELEY LAB

We conjectured (and later proved)

/2 /2 : .
o = g/ / K (sin #) K(sin ¢) 19 dg
—7/2J—m/2 \/COS2 0 cos? ¢ + 4sin’(0 + ¢)

Here K denotes the complete
elliptic integral of the first kind

Note that the integrand function
has singularities on all four sides
of the region of integration.

We were able to evaluate this
integral to 120-digit accuracy,
using 1024 cores of the “Franklin”
Cray XT4 system at LBNL.
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Heisenberg spin integrals ceceeny) ;
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In another recent application of these methods, we investigated the following
“spin integrals,” which arise from studies in mathematical physics:

n(n—i—l)/2 . . .
P(n) := i) / / / Ulry —1/2,20 — /2, Jx,, —1/2)
X T(x1 — /2,20 — /2 Tn —1/2)dxydas - - - dxy,

where

H1§k<j§n sinh|m(x; — xk)]
ngjgn i™ cosh™ (mx ;)

[Ti<jcnl@y —1/2)7 7 (z; +14/2)"7

H1gk<j§n(97j — T — 1)

U(rxy —i/2, 200 — /2, 2, —1/2) =

T(CI]l —’i/2,332—’i/2,"' 7xn_7’/2) —

H. E. Boos, V. E. Korepin, Y. Nishiyama and M. Shiroishi, “Quantum correlations and number theory,”
Journal of Physics A: Mathematical and General, vol. 35 (2002), pg. 4443.
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Evaluations of P(n) r:;}l .
Derived analytically, confirmed numerically \‘

BERKELEY LAB

1 1 1 3
P2)=—-—=-log2, P3)=-—log2+ =((3

7
~2l0g2 + G(3) — 5 C(3) o2 — 25C(3) — 2(5) + o ¢(5)log?

10 281 45 489 6775
— log2+ 2¢(3) — —¢(3)log2 — —(2(3) — ——
+log2 + 2 -((3) = S¢(3)log2 — ~=C*(3) — =((5)

P22 0(5) g2 — T CBIC() — Taae ((5) + Sd(7)

256 256
11515 42777
_ v logQ - ' °
(1) log 2+ —-C(3)C(7)

and a much more complicated expression for P(6). Run times increase very
rapidly with the dimension n:

1
2
1
D
1
6

n | Digits | Processors | Run Time
2 120 1 10 sec.
3 120 8 55 min.
4 60 64 27 min.
5 30 256 39 min.
6 6 256 59 hrs.
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Box integrals rf—\r| ‘iﬁ

The following integrals appear in numerous arenas of math and physics:

1 1
Bn(S) = /0 L (r%++ri)3/2 d,r.l..-d’r’n

1 1
s/2
An(s) = /0.../0 ((Tl—Q1)2+"'+(’Fn—qn)2)/ dry---dr, dqi - dgy

* B.(1) is the expected distance of a random point from the origin of n-cube.
* A (1) is the expected distance between two random points in n-cube.

* B (-n*+2) is the expected electrostatic potential in an n-cube whose origin
has a unit charge.

* A (-n+2) is the expected electrostatic energy between two points in a
uniform n-cube of charged “jellium.”

* Recently integrals of this type have arisen in neuroscience — e.g., the
average distance between synapses in a mouse brain.

DHB, J. M. Borwein and R. E. Crandall, “Box integrals,” Journal of Computational and Applied Mathematics,
vol. 206 (2007), pg. 196-208.
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Recent result (18 Jan 2009) L

BERKELEY LAB

/OO (—1+ e~ 4 v uerf(u))? 4

10

;‘*_‘E‘w

<6 +6v2 — 12v/3 — 107 + 301og(1 + v/2) + 301og(2 + \/§))

As in many of the previous results, this was found by first computing the
integral to high precision (250 to 1000 digits), conjecturing possible terms
on the right-hand side, then applying PSLQ to look for a relation. We now
have proven this result.

Dozens of similar results have since been found (see next few viewgraphs),
raising hope that all box integrals eventually will be evaluated in closed
form.

DHB, J. M. Borwein and R. E. Crandall, “Advances in the theory of box integrals,” manuscript, Mar 2009,
available at http://crd.Ibl.gov/~dhbailey/dhbpapers/BoxlIl.pdf.
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Recent evaluations of box integrals

. .‘.\
rrerrrerrmr

~
]

BERKELEY LAB

n S B, (s)
any | even s > 0 rational, e.g., : Bo(2) = 2/3
1 s # —1 5

N = gy

2 -3 —/2

2 -1 21og(1+ Vv2)

2 1 1V2 + Llog(1 4+ /2)

2 3 7f+201og( +/2)

2 | s#=2 55 2F1 (5, =55 55 —1)

3 -5 —5V3 - izw

3 -4 %\f ctan\/§

3 -2 —3G + mog(1+\/§)+3 Tig(3 — 2v/2)
3 -1 L1+ 2log (2 + V/3)

3 1 1[ 247r+1log(2+\f)
3 3 23 — Lm— Llog (24 V/3)

Here F is hypergeometric function; G is Catalan; Ti is Lewin’s inverse-tan function.
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Recent evaluations of box integrals, :\‘I A

' roer 1
continued
ni| s B,(s)
4 1 -5 —+/8 arctan (%)
4 | -3 4 G —12Tiy(3 — 2V2)
4| -2 wlog (2+V3) —2G -
4 | -1 210g3—2G+2T12(3—2\/§)—\/garctan(%)
411 %—10+10T12( —2\/§)+log3—Marctan %)
5| -3 —1—30(;’—1010g(2— )9——7T +510g(%)—%\/§arctan(ﬁ>
—10Cly (5 0 + 5 w)+10012(19—5 )
+10 Q1 (9+ w)+20012(9+§7r)—1001 (0+27)—2CL(0+Hn)
-2 —B( 6) — 2 Bs(—4) + 3 wlog(3)+10T12(§)—10G
-1 110G+ log(2—\/§)9+4187T2+510g(1+‘/5) 5 3arctan(ﬁ)
+0CL(560+4 7r)—180C1 > (3 9—6
—0CL(0+2n)+ 20012(9+ w)—l— (9+ ™) + 20012(6+1—617r)
51 1 —%G+glog(2—\/§)0+3607r + = \/_+ log(H*/_) 3arctan(ﬁ)+
cCly (30 + 3 7r) 701 (3 9—6
—2—77012(9+%7r)——01 (9+ ™) + 012(9+ m) + 22 Cly (0 + & 7)

Here G is Catalan; Cl is Clausen function; Ti is Lewin function; and 6 = arctan((16-3*sqrt(15))/11).
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Recent evaluations of box integrals,

N _.\
rrerrrerrmr

V2

continued |
nl s Ay, (s)
2| -5 5+ 32V2
2 | -1 3 — 2V2+4log(1+V2)
2| 1 %—F%\/_\Q/_—I-%lc\)/g_(l—i—\/i)

4 16v2 |, 2v3 | =
3| -7 515 5 T3
3| 2| 2r—12 G+12Ti2(3—2\/§)—i—67r10g(1—|—f)+210g2—§10g3—8ﬁarctan<%)
3| -1 2 27429 4/34210g (1 +\F)+1210g(1+ff> 4log (2 + V/3)
301 _Us_ 2, 34 —4f+210g(1+f)+810g(%)
33 —105 ~ o5 ™+ 7ag V2 + 35 V3 + 55 log (1+v2) + 3 log< \/g)
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Recent evaluations of box integrals, /\] ‘-,-;;

continued

Ap(s)

N

——7r\/_ D rlog(2) + 5%+ 5 log (2) + = log (3) + 5 Tiz (3 —2v2)
1—5671'\/_ 7rlog()—§7r2—|—1—567r—|—8\/§arctan(2\/§)—2410g(2)—|—%log(3)
+127 log (V2 —1) —64Tiy (3 —2v2) + 122G
128+637T—810g( +\/§)—3210g(1+\/_)+1610g(2)+2010g(3)
~8V2+ 323 -32V2arctan (=) — 96 Tiy (3 —2v2) +32G

5 5 \/—
—i—gﬁx/_—l—mwlog(l—l—\/_)——wlog( ) +4mlog (V2+ )—577 +im
+< \/_arctan(2\/_) 2log( )+8T12( —2\/_)
%_%W_mlog(:S)_‘_lfgo log() \/_+128
14010g(1—i—\/_) 10g(1+\/_)—|—160\/_arctan<\/—)+48G
_%_%W_ﬁbg( ) + 30 log (3 )+@\/_+105\/_
+1—14 log(1+\/_)+}8;l log(l—l—\/_)—l%\/_arctan(\/g)— G+ z T12(3—2\/§)

12304 512\/_+576\/_+800 5_@3 (3)4_%3 (5)
3
—320 B3 (1) +960 33 (3) — 17%’ By (5) — 160 By (—1) + 40 B, (1) — 29720 B, (3)
+896 By (5) + 32 B5 (—3) + 2 B5 (—1) — 148835( )+ 14336]3 (3) — 448B5 (5)
1613238 + 10294 9 _ 122 4000 \/—Jr 13 ( ) _ 1_92 32 (7) + @ Bs (3)
—256 Bs (5) + 232 B (7) + 160 B4( ) — S22 B,(3) + 784 By (5) — 1760 By (7)

+32 Bs (— ) 400 Bs (1) + 2%¥2 Bs (3) — 672 Bs (5) + 1056 By (7)

1279 4 92 449 3239 568 380
_567G_@W+Eﬂ _3465+62370\/_+3465 — a7 VO
+§5mg@) ﬁh%(y+¢3+%gmg@+wfy+wgbgC+f)
1 104
73 \/_arctan (7) — = v/3 arctan (\/_> + == log (2 — \/3) 0

43 n2@_2¢7+1Mc1(9+_)_ﬂMche_%ﬂ

18Ol (0+ L) — 3B Cly 9+ 4 m) + 2 Cly (9+57) + 228 Cla (0+ 2 )
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Elliptic Integrals ceeeeed]

BERKELEY LAB

Recent research in integrals of elliptic functions have revealed hundreds of
heretofore unknown identities, for instance:

1 1
—2/ :I:K(a;)da:—l—?)/ cE(x)de = 0
0 0

1
/K2 )dx — 4 /K dw+3/ E?(x) d:z:—/K’ (2)E'(x)dz = 0
0

—2/0 K3(;U)K’(:1:)E’(a:)dx+/o E(x)K”(z)E' (x)dz = 0

These studies involved computing thousands of individual definite
integrals, each to at least 1600-digit precision, then searching for
relations among them using PSLQ.
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\
Summary recee)

BERKELEY LAB

¢ The emerging “experimental” methodology in mathematics and
mathematical physics often requires hundreds or even thousands of
digits of precision.

¢+ High-precision evaluation of integrals, followed by constant-recognition
techniques, has been a particularly fruitful area of recent research, with
many new results in pure math and mathematical physics.

¢ There is a critical need to develop faster techniques for high-precision
numerical integration in multiple dimensions.
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